
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 9, 1207-1219 (1989) 

AN INVESTIGATION OF PRESSURE TRANSIENTS IN 
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SUMMARY 
This paper presents a two-dimensional model for the analysis of the pressure transient of a two-phase 
homogeneous bubbly mixture flowing in a pipeline and the numerical integration using the centre implicit 
method (CIM). Experiments were conducted to confirm the proposed sonic speed equation of an air-water 
mixture for an air concentration of less than 1%. The 2D CIM model is compared with the method of 
characteristics (MoC) for a two-phase bubbly flow in a pipeline. The comparisons show that the proposed 2D 
CIM model generally gives good agreement with the method of characteristics. 
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INTRODUCTION 

The investigation of pressure transients in a pipeline for a two-phase flow is more complex than for 
a single-phase fluid because the presence of the two-phase mixture causes a variation of the local 
acoustic wave speed in the pipeline. Dijkman and Vreugdenhil' examined the pressure transient 
problem via the gas bubbles cavitation which formed a thin layer at the top of a horizontal pipe, 
i.e. a separated flow, and found that there were two local acoustic waves propagating to and fro in 
the pipeline. Swaffield,' Kranenburg3s4 and Driels' studied the influence of air-water mixtures in 
a pipeline during a pressure transient, but they assumed that the two-phase flow phenomenon was 
concentrated in a region near the valve. Within this region the wave speeds varied, but the wave 
speed beyond it was constant because of the single-phase liquid assumption. Tullis et L I ~ . , ~  Wiggert 
and Sundquist' and Wylieav9 assumed that a small percentage of free gas was present initially in 
the pipeline, which remained constant throughout the pressure transient, and that the wave speed 
was affected by the ratio of air-water mixture and the local pressure. The results of some of the 
above mentioned researchers show that the pressure transient in two-phase fluids can be non- 
linear and that the wave propagation velocity is a function of the pressure. 

When considering pressure transients involving a two-phase mixture, the speed of propagation 
of the pressure disturbance is generally lower than that in either the gas or the liquid. Wylie* 
presented a dimensionless graph of wave speed as a function of the absolute pressure ratios for a 
range of up to 2% by volume of air-water mixtures in a pipeline, for which the ratio of the bulk 
modulus of the fluid to the pipe material is equal to 0.3. A similar investigation was also conducted 
by Martin et al." for two-phase bubbly and slug flows, but their experiments were conducted with 
higher values of the void fraction. 

Frequently, the pressure transient in two-phase fluids is modelled on the basis of the unsteady 
one-dimensional conservation equations and solved using the method of characteristics (MoC). 
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Discrepancies between the experimental and theoretical results of pressure transients involving 
such a flow are observed in many investigations. This is due partly to the inadequacy of the 
governing equations used. However, Streeter ” reported that the implicit numerical schemes 
usually perform much faster than the method of characteristics (MoC) in the study of pressure 
transients in pipelines. This is normally true because there is no restriction on the time step. 
However, for the given condition the implicit method may not yield satisfactory results, 
particularly when the transients are sudden and rapid as reported recently by Tan et al.” and 
Nathan et al.I3 

In this paper a two-dimensional model is presented for describing the pressure transients in a 
pipeline with air-water bubbly mixtures, which includes the effect of pipe friction. A centre implicit 
numerical integration schemeI4 is used and the stability criterion of this scheme has been found to 
satisfy the Courant et al.” condition. An experiment is also conducted to verify the local acoustic 
speed equation in the presence of a two-phase air-water bubbly mixture. 

BASIC EQUATIONS 

For the hydraulic system under consideration, the air-water mixture flowing in the pipe section is 
assumed to be in thermal equilibrium during the period of transient. Therefore there is no bubble 
growth due to the latent heat flow at the gas-liquid interfaces. Owing to the low value of the void 
fraction in pipes, the amount of slip between the gas and liquid phases is negligible. However, the 
bubbles present in the test section may expand or contract when they are subjected to the 
expansion or compression waves travelling to and fro in the pipe section. The following 
assumptions are made with regard to the flow regimes during the transient. 

1. 

2. 

3. 

4. 

5. 

Free air and water are present in the pipe system prior to the start of the transient and the 
amount of air remains unchanged. 
The air bubbles are uniformly distributed in the pipe as a homogeneous bubbly liquid 
mixture and the velocities of bubbles and water are assumed to be the same, i.e. no slip. 
The amount of free air is small (less than lo%), hence the density of the two-phase mixture is 
dominated by the liquid phase: 

P m  = ~g + (1 

Pf = P,. 
The difference in pressure across a bubble surface is neglected: 

The temperature of the fluids remains constant, i.e. an isothermal condition exists. 

Using these assumptions, the short-time averages of the continuity and momentum equations 
for a fluid in a control volume of an air-water mixture flowing in a horizontal pipe are as follows: 

continuity 
Pmc2(;+~+z)+lr a6 au aP  = 0, 

momentum 

au au au au’2 1 ap’ 
- + u- + 6-+- +- U’ - 
at ax dr ax p m c 2  at 
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where r is the radial co-ordinate, x the longitudinal co-ordinate, t the time co-ordinate, ii the axial 
velocity at r, 6 the radial velocity at r, pm the weighted density, C the acoustic velocity, P the 
pressure, v the kinematic viscosity and z the elevation. The prime represents the fluctuations 
component and the overbar denotes the short-time average component. Assuming the velocity 
component in the radial direction is much smaller than in the axial direction, i.e. u -g u, the 
equations can be simplified as follows: 

continuity 

momen tum 

aii aii 1 ap a2 a2u iaii 1 a - 
at ax Pmax 

g-+v -+-- ---(rdu‘), -+G-= --_- ax (arz rar) r a r  (4) 

where a = - E aiifar is the Reynolds stress term and E is the eddy viscosity. 

equation: 
Substitution of the Reynolds stress term into the momentum equation yields the following 

where v’ = V + E  is the effective viscosity. The accurate modelling of the effective viscosity is 
necessary and will be described in a later section. 

Integrating equations (3) and ( 5 )  over the cross-sectional area A of the pipe, and using 
definitions and identities 

BdA = P, f lAiidA = U ,  

2 +s 

the continuity and momentum equations can be reduced to the following forms: 

1 ap au 
_____ +--0, 
pmc2 at ax 

au au 1 ap 2 
-+u-+--+-7=0, 
ax ax pmax ~ p ,  (7) 

where R is the radius of the pipe and 7 is the wall shear stress. The gravity term is neglected in 
equation (7) because the pipe is a horizontal one. The shear stress 7 = - pv’(aU/ar), follows a four- 
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Table I. Definition of the four-region model 

Region Y* k B 

I 0-5 0 1 
I1 5-30 0.2 0 
Ill 3@@175R* 0.4 0 
1v 0.175-R* 0 0,07R* 

U* = J(r /p) ,  t = -pv'(au/ar),,, Y =  R - r ,  Y* = u*r/v, R* = U * R / V .  

region model described by Ohmi and Usui'6 and the distribution of the effective viscosity v' is 
defined by 

The values of k ,  B and Y* of the four-region model are given in Table I. 

V' = v [kY* + B ] .  (8) 

Local sonic speed 

In a two-phase flow situation the governing equations (6)  and (7) are incomplete if the 
constitutive equation for describing the local sonic speed is not defined. For a single-phase flow 
the local sonic speed C, is well known and is given as8," 

where K is the bulk modulus of the liquid, D the pipe diameter, T the pipe thickness and E the 
Young's modulus of the pipe material. However, the bulk modulus of the homogeneous bubbly 
mixture can be expressed as follows: 

where c1 is the void fraction and K ,  and K ,  are the bulk modulus of the liquid and vapour phases 
respectively. Using the ideal-gas law, it can be shown that the bulk modulus of the vapour phase, 
K ,  N 1/P. Since K ,  is larger than the local pressure P, equation (10) can be simplified to 

1 l a  -=-+-* 
K K ,  P 

Substituting equation ( 1 1 )  into equation (9) gives the expression for the sonic velocity of a 
homogeneous mixture: 

1 
C 2 = p m  -+-+- . 
- (L, :E) 

For a transient situation the change in the void fraction is assumed to be an inverse function of the 
local pressure: 

PO a = @,-, P 
where Po and a, are the initial pressure and void fraction respectively. Hence equation (12) 
becomes 
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From the above equation, the local sonic speeds for two-phase flow depend on the local pressure 
as well as on those terms given by equation (9). The validity of the proposed equation is verified 
later by experimentation. 

FINITE DIFFERENCE SCHEME 

Equations (6), (7), (8) and (14) are solved simultaneously using the centre implicit method, which is 
now extended for application in the two-phase bubbly flow regime in a horizontal pipe. If the pipe 
section is divided into N - 1 lengths with fixed axial interval Ax, the time increment on a 
space-time domain at a local node i is therefore determined by At, = Axi/Ci ,  where Ci is the local 
wave velocity. The finite difference quotients of the practical derivatives, expressed in terms of a 
variable 4, are given as follows: 

time domain 

axial domain 

(2-  6)(&+ - 4;) + 6 ( # ~ ~ ~ i i  - 
2 A x  9 

where 4 is the variable P or U ,  8 is the artificial viscosity and r is the radial distance from the centre 
of the pipe. Note that the parameter 8 is introduced directly to the spatial derivative terms only 
because the mathematical solution of the equations, in the given forms, can be easily handled.14 
Equations (15) and (16) are valid for a particular radial distance I from the centreline of the pipe 
section. The variations of the velocity U in the radial direction are given as follows: 

We substitute equations (15H19) into the momentum equation to solve for the values of U and P. 
Details of the 2D solver have been described in detail by Nathan et a l l 3  in an earlier publication. 

From these equations it can be seen that the values of U and P computed for the nodes in the 
axial domain may not be synchronized in the time domain because of the slight difference in the 
local wave velocities at these nodes. Therefore an interpolation scheme for the time domain is 
necessary. These interpolation routines for the pressure P and the mean velocity U at each node i 
and time instant t + A t ,  are given as follows: 

where 4 = P or-U. 
The initial steady state values of the pressure and velocity in the pipeline are used as the initial 

boundary conditions. With the initial boundary conditions known, the local velocity profile can 
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also be computed and hence the value of the wall shear stress z. The local wave speed Ci for the 
axial length of the pipeline is also calculated and from these values of Ci the time step increment 
ATi can be determined. The values of the local pressure and velocity at the new time step are then 
calculated using the governing equations. The approach adopted in this scheme is implicit in 
nature because the values of P and U are obtained by solving the equations simultaneously. 

Because of the different values of local sonic speed at the nodes, a minimum time step ATmin is 
determined and the new values of P and U at the new time step are obtained by using the 
interpolation equation (20). The computational procedure is then repeated by computing the new 
values of the wall shear stress z and the velocity profile. The procedure for the prediction of the 
pressure transient of a two-phase mixture in a pipeline is summarized in the flowchart shown in 
Figure 1. 

1 ESlABLlSH INI I IAL CONDITIONS I 
COMPUTE INITIAL VELOCITY PROFILE AN0 

t 

WALL SHEAR 

t = t . n t  

I 
t 

+ FOR NODE i 1 TO N 1 
I COMPUTE LDCAL WAVE SPEED c i  1 

COMPUTE P t p t i  AND U t i + A t i  
USING EUUAIIONS l151,l161 

FOR EACH NODE i 
L I 

1 
I I DETERMINE A t,,,in I 

COMPUTE P t i *A tmin AH0 U ti"Jtmin 
USING EUUATION (201 

FOR EACH NOOE i 

t >, TEND --+ 
(srop) 

Figure 1. Procedure for the prediction of pressure transients 
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EXPERIMENTAL INVESTIGATION 

For the purpose of verification of the expression for the local sonic speeds in a two-phase bubbly 
mixture, an experiment was carried out in a vertical pipe test section 2 m long and 47.5 mm in 
diameter. A series of tests with air bubbles-water mixtures was conducted. Figure 2 shows a 
schematic diagram of the test rig. A vertical test section was used because of the ease of generating 
the two-phase bubbly mixture. Since the transient is of the order of milliseconds, the effect of 
bubbles coalescing and drifting to the top of the test section is negligible. Two sensitive 
piezoresistive pressure transducers with resolution 0.5 kN mm-2 were placed at the top and 
bottom of the test section. 

The pressure in the reservoir was maintained constant by supplying compressed air to it. The 
two-phase bubbly flow regimes in the test section were maintained by injecting air at the bottom of 
the test section through an injector assembly. The pressure transient in the section was affected by 
a sudden closure of the valves, and the pressure responses at the transducers were recorded by a 
microcomputer data acquisition system. The high-speed data acquisition system is needed for 
data collection and analysis. The initial steady state flow rate was estimated by timing the fall of 
the water level in the reservoir after gate valve no. 3 was closed. It should be emphasized that the 
fall of the water level has a negligible effect on the system pressure due to the high initial pressure of 
the compressed air within the system. At the end of the test, the two-phase void fraction was 
determined simply by recording the volume of air trapped in the top of the test section. 

RESULTS AND DISCUSSION 

Table I1 shows the results of five experimental runs conducted with two-phase bubbly flow 
conditions in the test section prior to the onset of pressure transients. The bubbles in the flow are 
homogeneously distributed and generally less than 1 % by volume, i.e. a < 0.01. The wave speed C 
is determined experimentally by reading off the time difference between the two pressure traces of 
the transducers since the length of the test section has been fixed at 2 m. The pressure response of a 
typical test is shown in Figure 3. It can be seen that the pressure fluctuations for two-phase flow 

VALVE t l  

RELIEF 
VALVE 

AIR COMPRESSOR I 
PRESSURE TRANSDUCER 

Figure 2. Schematic diagram of the experimental test facility 
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Table 11. Comparison of theoretical wave speed with experimental data 

Wave velocity 

Pressure of air 
Test run column 

no. (bar) 

1 2.373 
2 1.633 
3 2.149 
4 2.433 
5 1-88 

Void fraction At 
u (Yo) (ms) 

0.8 14.39 
073  15.83 
0,85 14.73 
0.65 12.58 
0.68 14.29 

Theory 
Experimental (equation (7)) 

C, (m s-') C, (m SKI) CJCE 

139 141.7 1.019 
126.3 123 0.974 
136 130 0.956 
159 1605 1 W 9  
1 40 138.0 0.985 

83 1 
81 

79 

77 

75 

85 

83 
0 2 L 6 8 10 12 1.4 16 18 20 

TIME (ms) 

Figure 3. Typical pressure response in the test section 

are generally larger than for single-phase liquid in a system.14 It was observed that the air bubbles 
deformed from their spherical shape during the transient period. After the transient, the bubbles 
moved slowly to the top of the test section due to the effect of buoyancy, which is shown by the 
deviation of the pressure reading P, from its original value. However, the change in the pressure 
readings will not affect the accuracy of the local sonic speed because it takes only a few 
milliseconds for the wave to move across the test section. 

The comparison of the theoretically predicted local sonic speed with that obtained from the 
experiment shows good agreement, i.e. the maximum error in the prediction of C is 43%. This 
shows that the constitutive equation, i.e. equation (8), used to predict the local sonic speed is valid 
for the range of tests conducted. It should be emphasized that accurate prediction of the local sonic 
speed is important for the investigation of pressure transients using the proposed model. 
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Further verification of the two-dimensional two-phase flow CIM model by comparison with the 
predictions of Wylie’ and Padmanabhan et a l l 7  was carried out. In their analysis they used a 
time-line interpolation scheme together with the method of characteristics for the prediction of the 
experimental results. However, the governing equations used in their model were basically one- 
dimensional. The mass of air in the pipe was present before the start of the transient and was 
uniformly distributed throughout during the pressure transient. Table I11 gives the details of the 
two numericai experiments performed by them. In the proposed CIM model the conservations 
equations employed are two-dimensional and the local sonic speeds vary with the value of the void 
fraction. The number of nodes used in the simulation is 31 and the value of the artificial viscosity 0 
used is 1.005.’2 

Figures 4 and 5 show the comparison of the predicted results between the 2D two-phase flow 
CIM model and the time-line method used by Wylie. For an initial value of a = 0.002 the pressure 
head comparison at a distant to length ratio x/L of 0 4  shows a better pressure head time history: 
there is no overshoot at t = 12 s and the response of this trace is more sensitive at two time 
instances, namely 2 s and 8 s after the start of the transient. Similarly, the comparison given by 
another test run, with a = 0.009, shows good agreement in the pressure head time at an axial 
location ratio of x/L = 0733. 

In a similar comparison with the numerical calculations carried out by Padmanabhan et al., 
the two-phase CIM model gives better predictions as shown by Figures 6 and 7. For an initial 
value of a = 0.014 the pressure ratio-time history at the axial locations x/L = 0.75 and 0.25 shows 
good agreement during the pressure transients. The CIM model again appears to be more 
sensitive, as indicated by the presence of some ripples at the start of the transient in the time 

Table 111. Details of the pipe systems studied by Wylie and Padmanabhan et al. 

Data of Wylieg Case 1 Case 2 

Diameter (m) 
Length (m) 
Sonic speed (m s-  ’) 
Initial pressure (kg m-’) 
Initial velocity (m s- I )  

Temperature (K) 
Density (kg m-3)  
Downstream pressure head (m) 
Upstream pressure head 

fluctuations (m) 
Friction coefficient 
Void fraction CI (%) 

0.6 1 
3000 
981.4 

992 
089 
288 
992 

60 
6e10.3 

in 0.204 s 
0.0 
0.2 

0.6 1 
3000 

981.4 
992 
0.89 
288 
992 
13.4 

60.7 5-1 0.4 
in 0.204 s 

0.005 
0.9 

Data of Padmanabhan et al.” 

Diameter (m) 
Length (m) 
Sonic speed in water only (m s - l )  
Initial velocity (m s - l )  
Void fraction a(%)  
Reservoir pressure (MPa) 
Axial step (m) 
Radial step (m) 
Friction coefficient 

0025 
18.0 
600 
1.5 

00145 
038 
0.6 

6 5 8  x 
000099 
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Figure 5. Comparison of the pressure head time history at x / L  = 0.733 

interval of less than 0.1 s and by less truncation of the subsequent pressure peaks. These 
comparisons show that the 2D two-phase flow CIM model is a better numerical routine because it 
gives a more accurate assessment of the flow conditions in the pipe during transients. 

CONCLUSIONS 

From the work carried out in this investigation, it is found that the acoustic wave velocities of 
bubbly two-phase mixtures in a pipe can be accurately predicted by a simple equation with the 
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PAOMANABHAN'S EXPLIC IT - IMPUCI1  ---- 

- 
I I I I I 1 I I I 1 

0 0  01 0 2  03 0 1  05 0 6  0 7  o n  09 1 0  
T I M E  ( S E C )  

Figure 6. Pressure ratio versus time curve 

- -  - - PAOMANABHAN'S EXPLICIT - IMPLIC IT  

z 
I I I I I I I I I I 

0.0 0.1 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 1.0 

TIME. (SEC) 
Figure 7. Pressure ratio versus time curve 
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initial void fraction as a parameter. The comparison of the sonic speeds with the experiments gives 
good agreement, mainly because the void fraction in the pipeline is small, i.e. less than 1 %. The 
accurate prediction of the local sonic speed is necessary for two-phase flow because it will affect the 
accuracy of the proposed theoretical model for the prediction of pressure transients in the pipeline. 

The comparison of the predicted results with those of Wylieg and Padmanabhan et ~ 1 . ' ~  shows 
excellent agreement overall, and perhaps in many ways the CIM model shows more sensitivity 
during the pressure transients. This is because the governing equations used by the proposed 
model are two-dimensional and the model also includes both the effect of the velocity profile in the 
flow of the two-phase bubbly flow mixture and the effect of the varying local sonic speed. However, 
it should be pointed out that although the comparisons agree well with each other, they are all 
results from numerical methods and not from actual experimental data of pressure transients. 
Therefore the real challenge now is for the authors to apply the CIM model to experimental data 
that are available in the literature. 
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APPENDIX: NOTATION 

A 
B 
C 
D 
E 
H 
K 
k 
N 
P 
P 
R 
r 
T 
t 
U 
U 
U 
- 

V 
U 

U 

X 

- 

Y 
Y* 
Z 

CI 

cross-sectional area of pipe 
intercept of pipe friction model equation 
sonic velocity 
diameter of pipe 
Young's modulus of the pipe material 
pressure head in height of water column 
bulk modulus of liquid 
gradient of pipe friction model equation 
number of nodes in axial direction 
pressure 
short-time average of P 
radius of pipe 
radial co-ordinate 
thickness of pipe 
time 
mean axial velocity 
axial velocity at radius r 
short-time average of u 
volume 
radial velocity at radius r 
short-time average of u 
spatial length co-ordinate 
radial length difference, R - r 
non-dimensional length 
elevation 
void fraction 
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eddy viscosity 
viscosity 
kinematic viscosity 
total viscosity, E + v 
artificial viscosity 
density of the liquid 
variable representing either P or U 
wall shear stress 

Subscripts 

f liquid phase 
g vapour phase 
m mean weighted value 
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